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IL-33 Signaling in Lung Injury

Abstract:

Interleukin (IL)-33, a member of the IL-1 cytokine 
super-family, acts as both a traditional cytokine and 
an intracellular nuclear factor. It is generally released 
from damaged immune cells and signals through its 
receptor ST2 in an autocrine and paracrine fashion, 
plays important roles in type-2 innate immunity, 
and functions as an “alarmin” or a danger signal for 
cellular damage or cellular stress. Here, we review 
recent advances of the role of IL-33 in lung injury 
and explore its potential significance as an attractive 
therapeutic target.

Keywords: interleukin-33 (IL-33), lung injury, venti-
lator-induced lung injury (VILI)

Introduction:

Interleukin (IL)-33, previously known as “DVS27” 
[1], is a cytokine protein and ligand of the receptor 
ST2, a member of the Toll-like receptor (TLR)/IL-1 
receptor (IL-IR) super-family[2]. Although ST2 was 
first reported in 1989 in both mice[3] and rats[4], IL-
33 wasn’t identified and named until 2005 based on 
a computer database search for genes homologous to 
IL-1 family members[2]. 

IL-33 is an member of IL-1 cytokine family with ~32 
kD and 18 kD molecules that in the past represented 
uncleaved and mature IL‑33 proteins, respectively[2, 
5], but now represent the bioactive and cleavage forms 

[6, 7], respectively. IL-33 appears to be a cytokine 
with dual functions: first, it acts as a conventional 
cytokine via activation of the ST2 receptor complex, 
and second, it performs as an intracellular nuclear 
factor with properties of transcriptional regulatory 
[8, 9]. IL-33 plays an important role in type-2 innate 
immunity and induces production of IL-5 and IL-13 
by activating intracellular molecules via NF-κB and 
MAP kinase signaling pathways [10-12]. IL-33 is also 
considered an “alarmin” which is promptly discharg-
ing from its producing cells upon cellular damage or 
cellular stress [11].

The function of IL-33 in different immune diseases 
has been well examined and reviewed. The role of 
IL-33 in lung injury was first identified mainly in 
lung inflammation and allergic diseases such as viral 
infection and asthma [13, 14]. In recent years, IL-33 
has also been found to take part in other types of lung 
diseases such as ventilator-induced lung injury[15], 
acute lung injury, chronic obstructive pulmonary dis-
ease [16], lung cancer[17], and other clinical condi-
tions. The purpose of the current review is to highlight 
the crucial role of IL-33 in lung injury and explore its 
potential as an attractive therapeutic target. 

IL-33 receptor activation and its signaling pathway

IL-33 receptor is a complex that requires the expres-
sion of both ST2L, which is a member of the TLR/IL-
1R superfamily, and also the IL-1 receptor accessory 
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protein (IL-1RAP) [18, 19]. There are at least two oth-
er forms of ST receptors in addition to ST2L, includ-
ing secreted soluble ST2 (sST2) that can serve as an 
allurement receptor for IL-33[20] and a ST2V variant 
that is present primarily in the human gut [21]. Solu-
ble ST2 is considered a biomarker of several diseases, 
including cardiac disease[22], ulcerative colitis[23], 
and others.

IL-33 signaling starts from activation of cytoplasmic 
Toll-interleukin receptor domain which attracts the 
adaptor molecule myeloid differentiation primary 
response gene 88 (MyD88)[10, 24]. Then interleukin 
receptor-associated kinase 4 (IRAK4) is gathering to 
MyD88, followed by the interaction of myddosome 
which is composed of IRAK1, IRAK2, and/or IRAK3 
[25, 26]. This myddosome then combines with tumor 
necrosis factor receptor-associated factor 6 (TRAF6), 
which is crucial for signal propagation [27] and further 
activates transcription factors NF-κB or mitogen-acti-
vated protein kinase (MAPK) [2, 9]. (Figure 1). 

As a traditional cytokine, IL-33 stimulates Th2 cells, 
eosinophils, basophils and mast cells, to produce IL-4, 

IL-5, IL-13 and some other type 2 cytokines , which 
stimulate the proliferation of B cells, T cells and have 
other critical immune-modulatory functions[24, 28, 
29]. Function as a nuclear factor, IL-33 could also 
bind to NF- κB directly, sequestering it and diminish-
ing its ability to turn on gene transcription [9].

Release and cellular sources of IL-33 in the lung 

Even though it is well known that IL-33 expression is 
increased in inflamed tissue, controversy still exists 
regarding the active form of IL-33 and its releasing 
mechanism. Mature IL-33 (18kD) may be released 
during cellular necrosis, thereby acting as an “alarm-
in” [11, 30, 31], whereas other studies showed that 
unlike IL-1 super-family members, full-length IL-33 
does not need proteolysis for activation [6]. IL-33 is 
not activated by caspase 1 cleavage, but is processed 
into a mature bioactive form in neutrophils by elastase 
and cathepsin G [7]. The bioactivity of IL-33 is di-
minished in apoptotic cells through caspase-dependent 
proteolysis [6, 32].

There are various cellular sources of IL-33 in the 
lung. IL-33 expression in different cell types has been 
confirmed in individual studies and has been well-re-
viewed by Mirchandani et al[10]. Recent studies by 
Pichery et al., who generated an Il-33 Gt/ Gt which 
means Il-33–LacZ gene trap reporter strain, showed 
that using this innovative tool to examine expression 
of endogenous IL-33 in vivo revealed that an endog-
enous IL-33 protein was highly expressed in mouse 
lung cuboidal epithelium and other epithelial barrier 
tissues[33]. Importantly, they demonstrated that IL-33 
protein was localized mainly in the cell nucleus, but 
not in the cytoplasm of producing cells [33]. Mirchan-
dani et al. showed that IL-33 protein increased in 
whole lung homogenates of BALB/c mice after 6-12 
hours of chitin challenge[34] and further demonstrated 
that this expression of IL-33 was mainly from alve-
olar type II cells [35]. A recent study by Kaur D et 
al. showed that bronchial epithelium, airway smooth 
muscle (ASM), and mast cells expressed IL-33 cor-
relating with airway hyper-responsiveness (AHR) in 
latter asthma. Thus, it seems that IL-33 acts via au-
tocrine and paracrine pathways and may function as 
an important target to modulate the crosstalk between 
mast cells and ASM [36]. 

Role of IL-33 in lung injury

Figure 1. IL-33 signaling pathway. IL-33 first binds to a re-
ceptor complex, which is composed of ST2L and IL-1RAP. 
Signaling is induced through the cytoplasmic Toll-inter-
leukin receptor domain and leads to the recruitment of 
MyD88; IRAK4 is then recruited to MyD88, followed by 
interaction between IRAK1, IRAK2, and/or IRAK3 to form 
a complex known as the myddosome. This myddosome 
then interacts with TRAF6 and further activates the tran-
scription factors NF-κB or MAPK.
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Inflammation and allergy in the lung

Lung inflammation and allergies activate the innate 
immune response. Immune cells, along with macro-
phages, monocytes, and neutrophils, migrate into the 
lungs and further activate the pro-inflammatory re-
sponse by releasing cytokines and chemokines, lead-
ing to the immune response[37]. 

Considering IL-33 as an “alarmin” of Th2 immune re-
sponses, its role in lung inflammation and allergy has 
been well-studied. In virus-induced lung inflammation 
and the cysteine protease-induced lung inflammation 
model, there will always be an obvious increase in 
the production of IL-33 with an enhanced expression 
of ST2 Mrna [38-41]. These results show that IL-33/
ST2 signaling participates in Th2-mediated airway 
inflammation. As a pro-inflammation “alarmin”, IL-33 
itself could also induce airway inflammation, followed 
by group 2 innate lymphoid cell activation, eosinophil 
infiltration[42], and IL-8 up-regulation[43]. IL-33 can 
activate both ERK and p38 MAPK in primary endo-
thelial cells, however it can only stimulate ERK in 
epithelial cells in vitro [43]. 

Asthma is considered as a common life-long chron-
ic disease and is classically characterized by serum 
IgE levels elevation，airway hyper-responsiveness, 
allergic inflammation, and increased Th2 cytokine 
production[14]. The roles of IL-33 in asthma have 
been well studied [13, 14].  More recent research has 
implicated additional roles for IL-33 in asthma. It is 
plausible that IL-33 drives airway hyper-responsive-
ness (AHR) through directly stimulating mast cell 
activation and airway smooth muscle (ASM) wound 
repair and indirectly promoting ASM contraction via 
upregulation of mast cell-derived IL-13. The receptor 
for advanced glycation end-products (RAGE) was 
found to drive asthma/allergic airway inflammation by 
stimulating IL-33 expression in response to allergen 
and by directing the inflammatory response down-
stream of IL-33[44]. To clarify distinctions between 
the functions of IL-25 and IL-33 in asthma, the IL-
33-induced response was identified by more sustained 
laying down of extracellular matrix protein, neo-an-
giogenesis, and T helper type 2 (Th2) cytokine expres-
sion and elevation of tissue damping compared with 
IL-25[45]. IL-33 also plays a significant role in pedi-
atric asthma. Severe asthma with fungal sensitization 
(SAFS) was associated with higher levels of airway 

IL-33, and alternate exposure induced increasing 
IL-3-mediated ILC2 numbers, steroid-resistant AHR 
and Th2 cell numbers. IL-33 might be considered as 
a unique therapeutic target for SAFS [46]. Elevated 
innate cytokines interleukin IL-33 and IL-25 and pe-
culiar molecular responses in the interferon pathway 
are associated with rhinoviral infections in children. 
IL-33 also increased in fungal allergen-induced exac-
erbations, highlighting it as an attractive therapeutic 
target[47].

House dust mites (HDMs) are a leading source of 
allergens in patients with allergic disorders such as 
atopic dermatitis, asthma, and rhinitis [48], and ad-
ministration of HDM extracts to mice induces allergic 
airway inflammation with similarities to asthma [49]. 
Full-length and bioactive IL-33 expression increased 
in caspase-1-deficient mice exposed to HDM, fol-
lowed by a marked eosinophil recruitment. Using 
soluble ST2 receptor to neutralize IL-33 inhibited the 
enhanced allergic inflammation, while administering 
recombinant IL-33 enhanced allergic inflammation in 
caspase-1-deficient mice[50]. IL-33 was also need-
ed to induce a humoral immune reaction to a single 
inhalational challenge to a HDM-pulsed dendritic 
cell-derived Th2 response [51-53]. Other research 
using chitin, a component of the exoskeleton of many 
organisms including HDM, indicates that uncleaved 
chitin promotes IL-33 release, whereas cleaved 
chitin could induce the activation of caspase-1 and 
caspase-7, which promotes IL-33 inactivation and 
further results in the resolution of type 2 immune 
responses[54].

Acute lung injury and ventilator-induced lung 
injury 

Although mortality from acute lung injury (ALI) or 
its severe form, acute respiratory distress syndrome 
(ARDS) has decreased substantially over the past 30 
years, it still remains a high rate of morbidity and 
mortality[55, 56]. Surviving patients in intensive care 
units have long term disability and high mortality 
rates years after discharge. Mechanical ventilation, 
acting as a most significant supportive measure in 
ALI[57], may produce an iatrogenic complication 
called ventilator-induced lung injury (VILI). None-
theless, the etiology of VILI remains unclear. Very 
few studies have focused on this aspect of IL-33. One 
recent study[15] investigated IL-33/ST2 signaling in 
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rat VILI model. Ventilation at 10 cmH2O of inspira-
tory pressure for four hours elicited a high expression 
of IL-33 expression in lung tissues with increased 
membrane ST2L but decreased cytosol ST2L, indi-
cating translocation of ST2L from the cytosol to the 
cell membranes of lung tissue. Using a mechanical 
stretch model for lung epithelium, we found that lung 
epithelial cells were able to release IL-33 following 
mechanical stretch (unpublished data). These results 
indicated that IL-33/ST2 signaling might participate 
in the process of VILI. Further experiments should 
need to confirm the role and significance of IL-33 in 
VILI.   

Chronic obstructive pulmonary disease 

Chronic obstructive pulmonary disease (COPD) is 
considered as one of the major concerns in public 
health and is estimated to rank as the third worldwide 
for mortality[58]. Cigarette smoke exposure is con-
sidered the leading causative agent of COPD. There 
is no effective treatment for COPD, and the mecha-
nism by which the interaction between smoking and 
infection aggravate COPD remains poorly under-
stood[16].  Kearley et al.[59] showed that cigarette 
smoke altered the lung microenvironment to facilitate 
an alternative IL-33-dependent magnified pro-inflam-
matory response to infection, leading to exacerbated 
COPD. They first exposed ST2- or IL-33-deficient 
mice or wild-type control mice to cigarette smoke and 
subsequently infected them with influenza A virus. 
Significantly enhanced weight loss and exaggerated 
lung inflammation occurred compared to viral infec-
tion alone in ST2- or IL-33 deficient mice, indicating 
that administration of ST2 could protect mice from 
exacerbated inflammation. These results showed that 
IL-33 is an essential trigger of COPD aggravation 
in mice by augmenting the inflammatory response. 
Other studies also demonstrated that increasing IL-33 
expression in COPD [60] and altered IL-33 expres-
sion and release in airway epithelial cells is induced 
by cigarette smoke [61].

Lung cancer and pulmonary sarcoidosis

Immunoregulatory cytokines may play an important 
role in the metastases and growth of tumor. Sarcoid-
osis is also characterized as a multisystem immu-
nologic disorder. As an “alarmin” in type-2 innate 
immunity and innate lymphoid cells (ILC2), IL-33 
plays a significant role in lung cancer and pulmonary 

sarcoidosis. Kim et al.[17] evaluated the role of plas-
ma IL-33 levels in the development of lung cancer 
and showed that cancer patients have lower levels 
of IL-33 than normal control subjects and that IL-33 
decreased in a stage-dependent manner. Moreover, 
plasma IL-33 levels gradually reduced after surgical 
resection of malignant lesions, but were unchanged 
after chemotherapy. Together with cytokines IL-4 
and IL-10, IL-33 may also be considered a potential 
immunotherapy biomarker in cancer research [62]. 
Moreover, because strongly correlation with systemic 
disease has been shown only between IL-33 expres-
sion and sarcoidosis but not other granulomatous 
diseases, IL-33 appears to be a new marker of pulmo-
nary sarcoidosis[63, 64] and might serve as an adjunct 
diagnostic marker [64,65].

Other kinds of lung injury

IL-33 also plays an essential role in other types of 
lung injuries such as interstitial lung disease, idiopath-
ic pulmonary fibrosis, and malaria-associated lung 
injury.  Luzina et al.[65] demonstrated that bleomycin 
injury combined with full-length IL-33 expression 
exerted a synergistic pulmonary lymphocyte effect 
and collagen accumulation. In addition, the expres-
sions of several heat shock proteins were increased 
with full-length IL-33 treatment. Li et al.[66] showed 
that IL-33 was mainly expressed in lung epithelial 
cells, but was induced in macrophages by bleomycin. 
Deficiency of ST2, treatment with anti-IL-33 anti-
body, or attenuated alveolar macrophage depletion, 
as well as exogenous IL-33 enhanced bleomycin-in-
ducing lung inflammation and fibrosis. Ampawong et 
al.[67] compared the histopathological specialties of 
lung injury in Southeast Asian patients who died from 
severe malaria and investigated whether a correlation 
to pulmonary edema was present. They showed that 
IL-33 expression in bronchial cells was dramatically 
increased in severe malaria patients who also suffered 
from pulmonary edema. These results suggest that 
IL-33 may take part in the pathogenic process of lung 
injury during severe malaria.

Summary

As stated above, IL-33 seems to function as a potent 
activator in various types of lung injury (Figure 2).  
IL-33/ST2 signal transduction could be considered 
as a molecular target to treat human diseases such as 
asthma [45, 47], ALI/ARDS [68], and so forth. Con-
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sidering IL-33 as an “alarmin” cytokine, studies have 
tried to modulate the IL-33/ST2 signal, including both 
IL-33/ ST2L (membrane receptor and IL-33 complex) 
and IL-33/sST2 (soluble form and IL-33 complex). 
For example, vitamin D upregulated the sST2 produc-
tion in a dose-dependent fashion, leading to inhibit 
the IL-33 cytokine response [69]. Endogenous IL-33 
can be released from the respiratory epithelium upon 
stimulation to elicit an immune response. However, 
secreted, biologically-active IL-33 can be inactivat-
ed rapidly via the formation of a disulphide bonded 
form of IL-33. Such a mechanism limits the duration, 
rang of immunological responses to airway stimu-
li which dependent on ST2 [70]. RAGE recognizes 
ligands such as high-mobility group box 1, and its 
pathway has been reported to play an important role 
in ALI. RAGE-deficient mice demonstrated increased 
IL-33 levels in the lung, leading to enhanced innate 
AHR, whereas blockade of IL-33 receptor ST2 sup-

pressed innate AHR [71]. Vaccination against IL-33 
has already been used in research to inhibit hyper-re-
sponsiveness and inflammation [72, 73]. Rebamipide, 
a widely-used medication for mucosal protection, 
showed an inhibitory effect on IL-33 production and 
an improving mite-induced asthma conditions[74], as 
did dietary galacto-oligosaccharides on IL-33[75].

In conclusion, IL-33 appears to be a crucial cytokine 
in modulating immune responses in several lung 
diseases, particularly in hyper-responsiveness and 
inflammation. Further research on its role in VILI is 
worth further pursuing. IL-33 has shown potential as 
an attractive therapeutic target.
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