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Neuron-glia interactions in pain

Abstract

Glia contributes to pain by interacting with neighbor-
ing neurons in the spinal cord or sensory ganglion. 
There are two types of glia in the spinal cord: microg-
lia and astrocyte, which are different from the satellite 
in sensory ganglion including dorsal root ganglion and 
trigeminal ganglion.  Signals that mediate the two-way 
communication between glia cells and their adjacent 
neurons may include abnormal neuronal activity, calci-
um waves, cytokines, nitric oxide, and growth factors. 
These highly localized paracrine signals may account 
for the observation that both injured and non-injured 
neurons in the same ganglion play important roles in 
pain behaviors in partial nerve injury models of chron-
ic pain. In this review, we will describe roles of spinal 
glia and satellite glia in pain resulting from peripheral 
nerve injury or local inflammation followed by discus-
sion of the mechanisms of neuron-glia communica-
tions in pain. Relatively more attention is focused on 
the neuron-glia interactions in the sensory ganglion. 
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Spinal glial cells play key roles in pathological pain

Recent studies indicate that activated glial cells in 
spinal cord and dorsal root ganglion (DRG) play key 
roles in chronic pain conditions (1-5).  There are two 
main types of glial cells in the central nervous system 
(CNS), microglia and astrocytes.  Long viewed as 
a mere matrix for neurons, they have recently been 
found to play complex and important roles in regula-
tion of the local neuronal environment and the syn-
apse.  In response to neuronal damage or inflammatory 
stimulation, the glial cells become activated, undergo 
gliosis, and release a number of signals.  This com-
munication between spinal/sensory neurons and glia, 
which may be highly localized or paracrine, can occur 

through a number of messengers.  These include ex-
citatory amino acid transmitters (6), substance P (SP) 
(7), prostaglandins (8), adenosine triphosphate (ATP) 
(9), nitric oxide (NO) (10), and fractalkine (11,12).  
Activated glia are known to release a number of key 
pro-inflammatory cytokines such as tumor necrosis 
factor α (TNF-α), interleukin (IL)-1β, and IL-6 (13-
16).

It has been well documented that glial activation in the 
spinal cord is critical for the initiation and persistence 
of neuropathic pain (17-24).  Spinal administration of 
fractalkine produces cutaneous mechanical hyperalge-
sia, whereas blocking spinal fractalkine receptor using 
selective antagonist alleviates neuropathic pain (25).  
Furthermore, neurogenic pain induced by topical ap-
plication of zymosan can be blocked by a glial inhibi-
tor fluorocitrate (18,26-28).  Similarly, administration 
of another glial inhibitor, minocycline (29-31), also 
blocks neuropathic pain (32,33). 

Following peripheral nerve injury, the two types of 
glial cells in the spinal cord also undergo morpho-
logical changes.  Microglial cells proliferate, while 
astrocytes change in shape and manifest increased 
expression of GFAP (25,34).  Blocking neuronal 
activity originating from the injured DRG neurons 
suppressed microglia activation in the spinal cord 
(35). It suggests that peripheral activity may contrib-
ute to the activation of spinal glia. 

Roles of satellite glia in the DRG in pathological 
pain

The satellite glial cells (SGC) in the sensory ganglia 
are different from those in the central nervous system 
(CNS).  Though they share many characteristics, these 
SGC do not fit neatly into the astrocyte/microglia 
classification scheme, showing some ultrastructural 
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characteristics of both.  DRG neurons lack dendrites, 
and each neuron is wrapped with its own sheath of 
SGC and connective tissue, a structure unique to the 
DRG (36,37).

Changes in SGC in pathological pain models have 
been well-described, though not as extensively as in 
the CNS (38).  Following peripheral nerve injury, the 
SGC that surround the soma of the axotomized sen-
sory neurons proliferate (39-41), elaborate processes 
(42), and become immunoreactive (IR) for GFAP (43).  
The expression of GFAP is different between glia in 
DRG and CNS; in the CNS, some GFAP expression 
is observed even under normal conditions, while in 
DRG, the expression of GFAP is not detected until 
some form of nerve injury occurs (Figure 1). SGC 
activation is also observed in DRGs with localized 
inflammation without peripheral nerve injury (44) and 
in DRGs with chronic compression (45). 

Satellite glial activation in paravertebral sympa-
thetic ganglia

While much works on glia have been focused on the 
spinal cord and the DRG, there has been little atten-
tion about glial activation in the sympathetic ganglia. 
Since post-sympathetic efferents travel with peripheral 
nerves, it is anticipated that injury to the peripheral 
nerve also damages axons of the sympathetic nerves 
in addition to the sensory and motor fibers. One early 
study compared the effects of sciatic nerve transection 
on neuroinflammatory responses in DRG as compared 
to lumbar sympathetic ganglia.  They report that GFAP 
level, macrophage immunoreactivity, and T cell re-
sponses were even stronger in the sympathetic ganglia 
than in the DRGs (46).  

Our lab recently investigated changes in T cells, mac-
rophage responses and GFAP expression in lumbar 
sympathetic ganglia in the SNL model (47).  In this 
model, the injured L5 spinal nerve contains post-sym-
pathetic axons.  To examine inflammatory responses 
in the sympathetic ganglia with remote inflammation 
without nerve injury, we also compared the effects of 
spinal nerve ligation (SNL) on these neuroinflamma-
tory markers to the effects observed in the radicular 
pain model after local inflammation of the L5 DRG.  
Neuroinflammation in the inflamed DRG is strong-
ly mitigated by cutting the gray rami, the source of 
sympathetic fibers in the spinal nerve and nearby DRG 
(48).  It was found that compared to local DRG in-

flammation, SNL induced greater activation of satellite 
glial cells in sympathetic ganglia that innervate the L5 

Figure 1. Activated satellite glia in axotomized DRGs.  A  
& B: Visualizing reactive satellite glial cells surrounding 
live DRG neurons in an in vitro nerve-DRG preparation in 
mouse. Satellite glia are activated by sciatic nerve section 
2 weeks prior. A: The surface of a DRG visualized under 
an up-right light microscope. B: Same DRG visualized 
under a fluorescent microscope. Scale bar=50 µm. Arrows 
indicate activated SGC. C: GFAP immunoreactivity in a rat 
DRG section showing GFAP-positive SGCs surrounding 
nerve-injured DRG neurons. Scale bar=20 µm.       
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DRG. 

The roles of satellite glia activation in the parasym-
pathetic ganglia are not clear.  It is also unknown 
whether neuron and glia interact in a similar way as 
they do in the sensory ganglion. It is anticipated that 
satellite glial activation may contribute to enhanced 
excitability of the sympathetic neurons after sensory 
nerve injury or localized DRG inflammation as recent-
ly demonstrated by our group (48).  Since sympathetic 
activity is reported to regulate immune homeostasis 
under physiological conditions (49), altered sympa-
thetic neuron properties may, in turn, contribute to 
inflammatory responses in the sensory ganglion after 
peripheral nerve injury or local DRG inflammation.  

Roles of satellite glia in communication between 
injured and non-injured neurons in partial nerve 
injury

The sciatic nerve, which arises from neurons primarily 
in the L4/L5 DRG, is commonly used for partial nerve 
injury models such as the Seltzer (50) and CCI (51) 
models.  These partial peripheral nerve injury mod-
els were developed in order to model certain clinical 
situations more closely than nerve transection models.  
Studies using these models have shown the impor-
tance of uninjured neurons for maintained pathological 
pain behaviors (52), and have shown that uninjured 
neurons as well as injured neurons undergo changes 
in electrical properties and gene or protein expression 
(52-55).   This raises the question of how informa-
tion about the injury is “transmitted” to the uninjured 
cells.  Some possible mechanisms include electrical 
cross-excitation between neurons (56) and exposure 
of intact axons to Wallerian degeneration in adjacent 
injured axons (for review (57)).  However, it has been 
proposed that some of the SGC mechanisms may also 
provide a pathway for injured neurons to communi-
cate with and alter the properties of uninjured neurons 
(43,58,59).  For example, in the trigeminal gangli-
on, where sensory neurons have a more somatotopic 
organization than in the DRG, it was observed that 
injury to a particular tooth caused glia activation not 
only around the damaged neurons innervating that 
tooth (as demonstrated by both anatomical location 
and retrograde tracers), but also around some adjacent 
uninjured neurons (59).  

Possible mechanisms of neuron-glia communica-
tions

Evidence from single recordings of the SGC and 
neurons suggests that neuronal activity and glial cell 
activation are intricately linked (60-62).  A number of 
plausible mechanisms underlying neuron-glia commu-
nications has been suggested.  First, K+ accumulation 
in the extracellular space between neurons and the 
sheath formed by surrounding SGC (5).  In cultured 
spinal astrocytes, elevation of [K+] results in altered 
GFAP expression (63).  Depolarization or hyperpo-
larization of glial cell membranes has been observed 
in response to changes in adjacent neurons (64).  On 
the other hand, satellite glial cells may affect neuro-
nal excitability/activity through similar mechanisms 
(65,66). These membrane responses in glial cells may 
be associated with the concentration of ions in the 
glia. Second, spontaneously active neurons may also 
influence adjacent SGC by local release of SP, ATP, or 
other messengers (67-72).  Third, in response to gluta-
mate application or electrical stimulation, glia respond 
with slow alternating flows of calcium ions into and 
out of the cells, which has been described as “calcium 
waves” (73,74). Thus, calcium wave is believed to be 
another method for glial cells to communicate with 
nearby neurons.  Lastly, abnormal spontaneous ac-
tivity of the injured or inflamed sensory neurons may 
affects surrounding SGC by regulating the synthesis/
release of neurotrophins.

As discussed above, abnormal electrical activity may 
be a key way for injured neurons to communicate with 
their surrounding glia.  In commonly used animal 
models of neuropathic pain, abnormal spontaneous ac-
tivity of neurons and pain behaviors both appear with-
in the first 12 hours to 2 days post injury (50,51,75).  
Most other pathological changes described above, 
including glial activation, begin later than this.  Spon-
taneous afferent activity is therefore a likely candidate 
for initiating chronic pain.  A key observation is that 
temporarily blocking spontaneous activity beginning 
at the time of injury reduces or eliminates spontaneous 
pain, hyperalgesia, and allodynia.  This has been 
demonstrated in several different pain models, using 
methods to suppress spontaneous activity that vary 
widely in their specific targets (76-80).  Data from our 
own group showed that, in two different partial nerve 
injury models, early temporary blockade of sponta-
neous activity was sufficient to permanently prevent 
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development of pain behaviors (81).  In another study 
(35), we tested effects of suppressing DRG neuron ac-
tivity with sodium channel blockers on SGC activation 
in the rat SNL model, and found that local perfusion 
of the axotomized DRG with tetrodotoxin significant-
ly reduced this activation as evidenced by decreased 
GFAP immunoreactivity (Figure 2).  Similar findings 

were made with a more distal nerve injury (the spared 
nerve injury or SNI model), using a local anesthetic 
(the depot form of bupivacaine) at the nerve injury 
site.  Local perfusion of the DRG in the SNL model 
also significantly reduced microglia (OX-42 immuno-
reactivity) and astrocytic (GFAP immunoreactivity) 
activations in the adjacent spinal cord.  Results from 
these experiments indicate that early abnormal sponta-
neous activity from injured sensory neurons may play 
important roles in glial activation as well as patholog-
ical pain.  

Messengers for neuron-glia communication

A number of different messengers may serve for the 
communication between sensory neurons and sur-
rounding/adjacent glia. These include:

Cytokines/chemokines:  At the level of the DRG, a 
number of different cytokines and their receptors have 
been shown to be increased in response to various 
experimental pathologic conditions (82-85).  In a few 
cases, the SGC have been shown to be the source of 
particular cytokines or receptors (e.g., TNF-α (36)), 
but in most cases the cell of origin is not well defined.  
Fractalkine also known as chemokine (C-X3-C motif) 

ligand 1 is a protein that in humans is encoded by the 
CX3CL1 gene.  Unlike the spinal cord, in the DRG, 
fractalkine is constitutively expressed by the primary 
nociceptive neurons. Increased SGC activation as indi-
cated by increased GRAP mRNA expression following 
carrageenan injection in the hind paw was inhibited by 
anti-fractalkine antibody administered into the DRG 
(86).  These findings suggest that fractalkine released 
by nociceptive neurons contributes to the genesis of 
inflammatory pain through the activation of the SGCs.  
SGC are also responsive to other inflammatory media-
tors such as bradykinin and ATP.  Both SGC and DRG 
neurons can synthesize and respond to prostaglandins, 
another inflammatory mediator, though much of the 
evidence is from cultured neurons and SGC (36).

NO/cGMP:  The nitric oxide signaling system is one 
of the best defined in DRG.  Some neurons express 
NO synthase, and many SGC contain cGMP cyclase, 
the enzyme activated by NO.  NO is released in a 
non-vesicular fashion and can diffuse short distances 
between cells.  The SGC also accumulate NO precur-
sors (87), and this system has been proposed as a like-
ly candidate for neuron-SGC signaling.   Components 
of the system are upregulated after neuronal injury, 
and some but not all investigators report reduction of 
pain behaviors by NO inhibitors (for review see (36)).

Neurotrophins:  Neurotrophins such as nerve growth 
factor (NGF), neurotrophin (NT)-3, and brain-derived 
neurotrophic factor (BDNF) may play roles in chronic 
pain states in addition to their roles in neuronal devel-
opment and survival.  SGC express NGF receptors and 
may express NGF and NT-3, especially after injury.  
These have been proposed to play a role in injury-in-
duced sympathetic sprouting in the DRG (88-90).  
Hence these molecules represent another possible 
communication route between neurons and SGC.

Glial coupling

Several studies have demonstrated that nerve injury 
leads to increased coupling (indicated by diffusion 
of injected dye) among SGC around an individual 
neuron, and among SGC surrounding neighboring 
neurons (91,92).  The functional significance of this 
coupling, and its relationship to glial activation, are 
not yet clear.  However, these observations may reflect 
another mechanism by which glia mediate abnormal 
communication between neurons following nerve 

Figure 2.  Neuronal blockade with TTX reduced satellite 
glia activation after spinal nerve ligation.   Sections of DRG 
stained for GFAP (red) and Neu-N (Green). A: GRAP-im-
munoreactive satellite glia activation following SNL on 
POD3; B: Applying TTX locally to the axotomized DRG 
starting at the time of nerve injury reduced the nerve inju-
ry-induced GFAP expression.  Scale bar = 50 µm. Modified 
from Xie et al., Neuroscience 2009 (35).
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injury and may contribute to cross-talk among DRG 
neurons after nerve injury (93). 

Summary

Glial cells in the spinal cord and sensory ganglion 
react to peripheral nerve injury or inflammation, and 
contribute to pain by interacting with neighboring 
neurons. Preclinical studies have demonstrated ro-
bust effects of inhibiting glial activation in alleviating 
pain.  However, clinical trials using glial inhibitors 
for managing neuropathic pain have been generally 
disappointing.  Much more works remain to be done to 
further understand neuro-glia interactions in pain and 
to translate preclinical studies to clinical pain manage-
ment.  
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