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Abstract
While effective antiretroviral treatment makes human immu-
nodeficiency virus (HIV)-related death decreased dramati-
cally, neuropathic pain becomes one of the most common 
complications in patients with HIV/acquired immunodefi-
ciency syndrome (AIDS). The exact mechanisms of HIV-re-
lated neuropathic pain are not well understood yet, and no 
effective therapy is for HIV-pain. Evidence has shown that 
proinflammatory factors (e.g., tumor necrosis factor alpha 
(TNFα)) released from glia, are critical to contributing to 
chronic pain. Preclinical studies have demonstrated that 
non-replicating herpes simplex virus (HSV)-based vector 
expressing human enkephalin reduces inflammatory pain, 
neuropathic pain, or cancer pain in animal models. In this 
review, we describe recent advances in the use of HSV-
based gene transfer for the treatment of HIV pain, with a 
special focus on the use of HSV-mediated soluble TNF re-
ceptor I (neutralizing TNFα in function) in HIV neuropathic 
pain model.
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our work and others focusing on the pathophysiological 
mechanisms of HIV-neuropathic pain and gene therapy.

HIV-Related Neuropathic Pain

HIV sensory neuropathies contain distal sensory 
polyneuropathy as results of both HIV infection and an-
tiretroviral drug-induced toxic neuropathies [3-6]. Clini-
cal characteristics of distal sensory polyneuropathy and 
ART-induced toxic neuropathies are very similar. Neu-
rotoxic ART has even been removed from pharmacies 
entirely in developed countries. Evidence shows that 
many people with HIV alive today, have ever been on 
numerous therapeutic regimens with neurotoxic drugs, 
and that they have already developed persistent painful 
neuropathy [7,8]. HIV-NP is typically bilateral, of gradu-
al onset, and described as ‘aching’, ‘painful numbness’, 
or ‘burning’ [9]. Pathological feature of HIV-NP includes 
loss of sensory neurons of the dorsal root ganglion 
(DRG), Wallerian degeneration of the long axons in dis-
tal area, infiltration of macrophage into the DRG, and a 
'dying back' sensory neuropathy [10-14]. However, the 
precise mechanisms of HIV-NP remain unknown yet and 
no effective therapy for HIV-NP.

Proinflammatory factors

Early studies have demonstrated that glia infected/
activated by HIV release proinflammatory factors, such 
as tumor necrosis factor alpha (TNFα) and interleukin 
1 (IL-1) [15]. Infiltration of inflammatory lymphocyte 
and macrophage to the DRG of AIDS patients produces 
pro-inflammatory cytokines including TNFα [12,16-20]. 
There is an increased TNFα in human CSF[21-25] and 
brain tissue [25-28] in patients with HIV. An interaction 
of TNFα and HIV infection enhances toxic chemokine 
products [29,30]. It is known that proinflammatory cy-
tokines play an important role in the development and 
maintenance of neuropathic pain [31-35].Proinflam-
matory mediators are critical to enhancing HIV-NP[36]. 
Intrathecal administration of gp120 induces acute pain 
and spinal proinflammatory cytokine release [37]. Pe-

Introduction

The United States Centers for Disease Control re-
ports that an estimated 1.1 million people were living 
with human immunodeficiency virus (HIV) at the end of 
2014 and that 39,513 people in 2015 were diagnosed 
with HIV infection in the United States (https://www.
cdc.gov/hiv/basics/statistics.html, last date accessed 
June 24, 2017). Although effective antiretroviral ther-
apy (ART) makes HIV become a treatable, chronic dis-
ease [1,2], new challenges are emerging in managing 
HIV. Chronic pain becomes one of the most common 
complications in patients with HIV/acquired immunode-
ficiency syndrome (AIDS). HIV-related pain is often un-
derestimated in HIV/AIDS patients while the main focus 
is on immunosuppression and opportunistic infections. 
HIV neuropathic pain (HIV-NP) is refractory, and the cur-
rent available chronic pain therapies are not effective 
to HIV-NP. This article reviews current researches from 
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not rejected by the host immune response (see review 
[60,61]). HSV-1 genome is a linear double-stranded 
DNA, and has more than 75 genes coded in the 152 kb 
genome [60,61]. HSV genes are expressed in a well-or-
dered temporal cascade of immediate early (IE) genes, 
followed by early genes, and subsequently late gene 
products; both early genes and the late genes require 
synthesis of IE gene products [60,61]. Deleting essential 
IE genes from the HSV genome makes it non-replicating 
recombinant [62], but the virus are still able to be used 
to effectively deliver target gene products [63,64]. Gene 
transfer mediated by HSV vector may provide a promis-
ing approach to the management of neuropathic pain. 
HSV vector encoding human preproenkephalin gene af-
ter transduction of DRG neurons by hindpaw injection 
[65], produces an antinociceptive effect in different 
pain models [66-68]. We have reported that HSV vec-
tors expressing enkephalin, p55 TNF soluble receptor 
(p55TNFSR), interleukin-10, and interleukin-4 produce 
antinociceptive effects in preclinical pain models [69-
75]. Fink and colleagues reported phase 1 clinical trial 
using HSV vector encoding human preproenkephalin in 
patients with cancer pain [76]. The clinical trial assessed 
the safety and explored the potential efficacy of this ap-
proach in humans, indicating that it may be effective in 
reducing cancer pain [77].

The distribution of systemically administered drugs 
to the brain may be limited by the blood-brain barri-
er [65], and they produce systemic side effects. Gene 
transfer that permanently release gene products, might 
be a useful alternative to regular pharmacological ap-
proaches [65]. Gene transfer of HSV vector may repre-
sent a platform technology---nerve targeting drug de-
livery system [77]. Viral vectors, however, show toxicity 
and inflammation from ‘leaky’ expression of viral genes 
and reaction to the vector coat protein in pre-immune 
animals [65,78]. Despite these limitations, ours and oth-
er studies have shown that HSV vector is still a highly 
effective gene delivery approach to treating peripheral 
and central nervous diseases [65,79,80].

TNFSR mediated by HSV vector produces antiallo-
dynic effect in HIV-NP

Our report has shown that the HIV gp120 application 
onto the sciatic nerve induces upregulation of TNFα, 
C-X-C chemokine receptor type 4 (CXCR4, a co-receptor 
of HIV), stromal cell-derived factor 1-α (SDF1-α, CXCR4 li-
gand) in both the DRG and the lumbar spinal dorsal horn 
[81]. Soluble TNF receptor (TNFSR) blocks bioactivity of 
TNFα. HSV vector encoding p55TNFSR gene (T0TNFSR) 
reduces mechanical allodynia and lowers TNFα, CXCR4 
and SDF1-α induced by gp120 in the DRG and SCDH [81], 
suggesting that the pathway of TNFα to the CXCR4/
SDF1 has an important role in the HIV-NP and that in-
hibiting proinflammatory cytokines/chemokines reduce 

ripheral gp120 increases TNFα within the nerve trunk 
[38], intense glial activation in the spinal cord in parallel 
with neuropathic pain behaviors [38]. We have report-
ed that peripheral gp120 application onto the rat sci-
atic nerve upregulates TNFα in the L4/5 DRGs and spi-
nal cord [39]. Systemic 2',3'-dideoxycytidine (ddC), one 
drug of ART lowers mechanical threshold [40,41] and 
increases both mRNA and protein of TNFα in the spinal 
cord dorsal horn (SCDH) [41]. Inhibition of TNFα or solu-
ble TNF receptor reduces mechanical allodynia induced 
by gp120 application [41].

Therefore, it is possible that TNFα signal is involved 
in the induction and/or progression of HIV-NP.

Reactive oxygen species and C/EBPβ in HIV

Oxidative stress evokes many signaling events [42]. 
Mitochondria are the main source of reactive oxygen 
species (ROS). ROS plays a role in different pain mod-
els [43-48]. ROS scavengers produce a strong antinoci-
ceptive effect in persistent pain models [49]. Oxidative 
stress is involved in the pathogenesis of neuroAIDS 
[50]. HIV infection and ART can evoke rapid neurotox-
icity [51]. Either HIV gp120 or ddC plays a role in ini-
tiation and/or intensification of ROS [52,53]. Intrathe-
cal gp120 induces spinal release of nitric oxide (NO) as 
well as proinflammatory cytokines; pretreatment with 
NO synthase (NOS) inhibitor abolishes gp120-induced 
mechanical allodynia [54]. Importantly, ROS evoked by 
HIV infection, induces apoptosis through TNFα and its 
receptors [52]. Mitochondrial DNA (mtDNA) is critical 
for oxidative phosphorylation complex I proteins. DNA 
poly-merase-γ is important for replication of mtDNA. 
ARTs inhibit Poly-merase-γ, resulting in mitochondrial 
respiratory chain dysfunction and oxidative phosphor-
ylation deficits [51]. Systemic ddC induces neuropathic 
pain and lowers the activity of endogenous manganese 
superoxide dismutase (SOD2) in the SCDH; ROS scaven-
gers significantly reduce mechanical allodynia [55].

CCAAT/enhancer binding proteins (C/EBPs) are tran-
scriptional factors in cell development and induction of 
inflammatory factors in the peripheral and central ner-
vous system [56]. C/EBPβ plays an important role in a 
variety of HIV disease stages [57]. An increase in C/EBPβ 
mRNA is found in the brain tissue of HIV-1 encephalitis 
patients [58]. We have found that combination of pe-
ripheral gp120 with systemic ddC increases pC/EBPβ in 
the SCDH [59], suggesting that pC/EBPβ plays a role in 
HIV-NP.

HSV Vector for Gene Therapy of Neuropathic 
Pain

During natural infection of herpes simplex virus (HSV), 
HSV is carried by retrograde axonal transport from the 
site of original inoculation to the neuronal perikaryon. 
Latently infected neurons function normally and are 
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cord and the L4/5 DRG; T0TNFSR reduced mechanical 
allodynia and suppressed TNFα, SDF1-α, and CXCR4 in 
the lumbar SCDH and DRG [82], indicating that TNFα is 

neuropathic pain. In another model of HIV-NP induced 
by intraperitoneal ddC [40], ddC induces upregulation 
of TNFα, SDF1-α, and CXCR4 in both the lumbar spinal 
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Figure 1: Antinociceptive effect of p55TNFRI mediated by 
HSV vectors. Mechanical sensitivity was examined through 
the measurement of foot withdrawal frequencies to a se-
quential series of calibrated von Frey filaments applied in 
ascending order to the plantar surface of the foot (98). HSV 
vector T0TNFSR or T0Z was inoculated into the hindpaws 
1 week post gp120/ddC. The occurrence of foot withdraw-
al for each trial was expressed as a percentage response 
frequency. Two weeks after HSV vectors, foot withdrawal 
frequencies to calibrated von Frey filaments in rats with sub-
cutaneous inoculation of T0TNFSR were significantly lower 
than that in T0Z at filaments of 3.6, 5.5, 8.5, and 11.8 gram, 
* P<0.05, ***P<0.001 vs. T0TNFSR, t test, n=6.

 

0

1

2

T0Z T0TNFSR

   
 T

N
FR

I
(ra

tio
 o

f T
0Z

)

TNFRI

β-actin

∗∗

Figure 2: The expression of p55TNFSR mediated by the 
HSV vectors. One week after gp120/ddC, T0TNFSR or 
T0Z was inoculated into the hindpaws. On day 14 post HSV 
vector, the L4/5 dorsal root ganglion (DRG) was harvested, 
and western blot assays were conducted for testing TNFRI. 
T0TNFSR injection significantly induced the expression of 
TNFRI compared with T0Z in the L4/5 DRG, **P < 0.01 vs. 
T0Z, t test, n= 6.
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Figure 3: The effect of p55TNFSR mediated by the HSV vectors on mitochondrial superoxide in the SCDH at 2 weeks post HSV 
vectors. One week post gp120/ddC, neuropathic rats received hindpaw injection of T0TNFSR or T0Z into ipsilateral hindpaw 
of rats. Two weeks after HSV vector, MitoSox Red was intrathecally injected 70 min prior to perfusion. The representative 
image of MitoSox red for mitochondrial superoxide in sham+T0Z, gp120/ddC+T0Z, and gp120/ddC+T0TNFSR, was shown 
in Figure A, B, and C, respectively, scale bar, 50µm. (D) The number of mitochondrial superoxide positive cells in the SCDH 
lamina I-II and III-V was shown, **P<0.01, ***P<0.001, one way ANOVA with post hoc PLSD test, mean ± SEM, n=5-6 rats.
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toSox positive cell imaging in the gp120/ddC model. The 
increased number of MitoSox positive cells in the gp120/
ddC model was decreased by HSV vector T0TNFSR (Figure 
3D), suggesting that TNFSR suppresses neuropathic pain 
through reducing spinal ROS.

TNFSR mediated by the HSV vector inhibits pC/EBPβ 
in the gp120/ddC neuropathic pain model

C/EBP plays an role in induction of inflammatory me-
diators in CNS [56]. HIV patients show upregulation of 
C/EBPβ mRNA in the brain tissue [58]. We have shown 
that HIV-NP increases phosphorylation of C/EBPβ (pC/
EBPβ) [59]. Figure 4A-C revealed the representative pC/
EBPβ-IR images in the gp120/ddC model. Treatment 
with gp120/ddC increased pC/EBPβ-IR expression; the 
upregulated pC/EBPβ-IR was suppressed by T0TNFSR 
(Figure 4D), suggesting that TNFSR reduces neuropathic 
pain through decreasing spinal pC/EBPβ.

The relationship of TNFα/TNF receptor activity and ROS 
or C/EBPβ in HIV-NP is still not clear. HIV gp120/ddC in-
duces release of TNFα [83]. Through TNF receptor, TNFα 
triggers a cascade of events [88]. TNFα activates NMDA 

involved in the ARTs-related pain through the SDF1-α/
CXCR4 system.

We have reported that combination of peripheral 
gp120 with systemic ddC (gp120/ddC) lowers mechanical 
threshold for more than 3 weeks, and that the minimum of 
mechanical threshold occurs around 2 weeks after gp120/
ddC [59,83,84]. Previous studies show that HSV vector 
T0TNFSR reduces neuropathic pain induced by spinal 
nerve injury [69]. In gp120/ddC model, 2 weeks post HSV 
vector, T0TNFSR significantly reduced foot withdrawal fre-
quencies (Figure 1), and increased the expression of solu-
ble TNFRI in the L4/5 DRG (Figure 2).

TNFSR mediated by the HSV vector reduces mito-
chondrial superoxide in gp120/ddC model

Oxidative stress causes many signaling events [42]. HIV 
gp120 or ddC induces ROS [52,53]. HIV gp120 application 
onto the sciatic nerve upregulates spinal mitochondrial su-
peroxide [73,85]. We reported that gp120/ddC increased 
spinal mitochondrial superoxide [59,84] using MitoSox 
positive cell imaging (a marker of mitochondrial superox-
ide) [86,87]. Figure 3A-C showed the representative Mi-
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Figure 4: The effect of p55TNFSR mediated by the HSV vectors on pC/EBPβ in the SDH at 2 weeks post HSV vectors. 
One week post gp120/ddC, neuropathic rats received injection of T0TNFSR or T0Z into ipsilateral hindpaw of rats. Two 
weeks after HSV vector, spinal pC/EBPβ-immunoreactivity (pC/EBPβ-IR) was examined using immunohistochemistry. The 
representative images of pC/EBPβ-IR in sham+T0Z, gp120/ddC+T0Z, and gp120/ddC+T0TNFSR were shown in Figure A, B, 
and C, respectively, scale bar, 50μm. (D) The quantitative signals of pC/EBPβ-IR in the SCDH were shown, ** P < 0.01, one 
way ANOVA with post hoc PLSD test, mean ± SEM, n=6 rats.
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receptors to increases Ca2+ influx [89]. Indeed, HIV gp120 
increases intracellular free Ca2+ concentration in the mice 
SCDH cells [90]. ddC also increases spinal cytosolic Ca2+ con-
centration in painful neuropathy [91]. There is an interplay 
between cytosolic Ca2+ and mitochondrial ROS [92-94]. Spi-
nal pCREB may make a contribution to the development of 
chronic pain [95]. Cytosolic Ca2+ may induce transcriptional 
factor CREB regulating C/EBPβ activity [96]. CREB binds C/
EBPβ gene promoter, inducing the endogenous C/EBPβ 
expression [97]. Therefore, it is possible that TNFα-TNFR 
induces ROS, or pCREB/ C/EBPβ in HIV-NP, which need to 
be examined in the near future.

In summary, glia infected or activated after HIV re-
lease proinflammatory factors, such as TNFα. TNFα-TNF 
receptor signal may induce ROS or C/EBPβ in HIV-NP 
through complex pathway in the model of HIV-NP. Gene 
transfer using the HSV vector encoding the gene of TNF 
soluble receptor reduced neuropathic pain in animal 
studies, providing additional potential approach for suc-
cessful treatment of HIV neuropathic pain.
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