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Abstract
Neuropathic pain is a debilitating form of chronic pain that 
affects 6.9-10% of the population. Health-related quali-
ty-of-life is impeded by neuropathic pain, which not only 
includes physical impairment, but the mental wellbeing of 
the patient is also hindered. A reduction in both physical 
and mental wellbeing bares economic costs that need to be 
accounted for. A variety of medications are in use for the 
treatment of neuropathic pain, such as calcium channel α2δ 
agonists, serotonin/noradrenaline reuptake inhibitors and 
tricyclic antidepressants. However, recent studies have indi-
cated a lack of efficacy regarding the aforementioned medi-
cation. There is increasing clinical and pre-clinical evidence 
that can point to the use of ketamine, an “old” anaesthetic, 
in the management of neuropathic pain. Conversely, to see 
ketamine being used in neuropathic pain, there needs to be 
more conclusive evidence exploring the long-term effects of 
sub-anesthetic ketamine.
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NP pain is usually debilitating, and due to its chron-
ic and distressing nature it also has a negative impact 
on the patient’s health-related quality-of-life (HRQoL). 
A review analysing 52 studies in patients with 6 differ-
ent disease-causing NP determined that NP was associ-
ated with greater impairments in a number of HRQoL 
domains. The extent of impact is also dependent on the 
different measures of HRQoL that were utilized in each 
study, considering that each measure may have a dif-
ferent sensitivity to the effects of NP [3]. Overall, NP is 
associated with higher pain severity and greater inter-
ference on daily activities [3-11]. NP has economic con-
sequences, in the form of direct NP pain costs and indi-
rectly through impairment on quality of life, which en-
compasses restricted employability. In the UK, patients 
with post-herpetic neuralgia (PNH) and who were also 
attending a tertiary referral center had a lifetime cost of 
£770. Comparatively, a 1-year incidence cohort would 
differ between an overall lifetime cost of £4.8 million 
(incidence of 21,000 people) to £17.9 million (incidence 
of 78,200 people) [12].

Tricyclic antidepressants, calcium channel α2δ ago-
nists and serotonin/noradrenaline reuptake inhibitors 
are the first-line treatment for NP. Unfortunately, treat-
ment for NP pain has been inconsistent, whereby inade-
quate targeting of the underlying mechanism behind NP 
has resulted in poor pain relief in two-thirds of patients 
[13,14]. There is increasing pre-clinical and clinical ev-
idence to indicate the efficacy of sub-anesthetic doses 
of ketamine in NP, although ketamine has been used 
with caution and subsequent preclusion from clinical 
application due to its psychotomimetic effects [15]. The 
intention of this review is to analyze the current body 
of animal model studies and clinical trials pertaining 
to ketamine, and to see if ketamine has a place in the 
treatment of NP.

Epidemiology

Questionnaires
For decades, the epidemiology of NP was understud-

ied. This is because there were no real valid or reliable 
clinical instruments that could appropriately identify 
the various classifications of NP. Over time, researchers 

Introduction
The International Association for the Study of Pain 

(IASP) introduced a new definition for neuropathic pain 
(NP) in 2011, in which NP was and is described as “pain 
caused by a lesion or disease of the somato sensory 
system” [1]. The cause for a dysfunctional somatosen-
sory system, and consequentially NP, can be classified 
into either an anatomical or etiological source. Further-
more, the symptoms associated with NP are separated 
into either spontaneous pain or stimulus-evoked pain 
[2].  Spontaneous pain is a common form of abnormal 
pain that occurs independently from any stimuli, and is 
composed of three components: paresthesia, paroxys-
mal, and superficial. Conversely, stimulus-evoked pain 
requires an external stimuli to induce a pain sensation, 
and is further categorized into the type of response 
that a patient elicits: either positive-symptoms or neg-
ative-symptoms. Positive-symptoms are comprised 
of allodynia and hyperalgesia, which are reflective of 
disproportionate neuronal activity and hyperexcitabili-
ty. Allodynia can be triggered by a usually non-painful 
stimulus, whereas hyperalgesia is an increased pain re-
sponse when evoked by nociceptive stimuli.
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Patients with NP tend to be female, slightly older, no 
longer married, had reduced socioeconomic levels, and 
the pain was more severe and longer in duration than 
non-NP pain [26]. In Austria, the prevalence of NP was 
3.3%, with prevalence increasing to 26% in 41-50 year-
olds, and 24% in 51-60 year-olds [8]. Higher rates of 
prevalence of NP were found in Canadian participants, 
in which 17.9% had NP symptoms. Once again, features 
of being female, economically disadvantaged, a more 
severe form of pain compared to non-NP, and restric-
tions of daily activities were reported [27].

Molecular Mechanisms of Neuropathic Pain
Multiple pathophysiological mechanisms underpin 

NP. Moving away from an etiology-focus to a mecha-
nism-based approach may prove to be clinically import-
ant for improving the efficacy of the treatment options 
that could be available.

Peripheral sensitization
As a consequence of nerve damage, ongoing spon-

taneous activity and excessive electrophysiological ex-
citability occur in the following sites: cell body of the 
damaged neuron in the dorsal root ganglia; the neuro-
ma; and finally, the neighbouring functioning afferents. 
In other words, nociceptive primary afferents become 
hyperactive because of nerve damage, which is defined 
as peripheral sensitization [28,29].

Voltage-gated sodium channels Nav1.3, Nav1.7, 
Nav1.8, and Nav1.9 undergo differential expression 
due to nerve damage [30]. Marked changes to the volt-
age-gated sodium channels result in lower thresholds 
and an increased rate of firing [31]. Studies investigat-
ing the two inherited-pain syndromes, inherited eryth-
romelalgia and paroxysmal extreme pain disorder, have 
reported gain-of-function mutations in the gene re-
sponsible for Nav1.7, SCN9A. Conversely, insensitivity 
to pain occurs when there is a loss-of-function in these 
sodium channels [32]. Potassium channels are also be-
lieved to play a part in NP, since peripheral nerve injury 
is believed to cause a reduction in potassium channel 
expression [33].

An inflammatory response, consisting of cytokine-
sIL-1β, IL-6, and tumour necrosis factor (TNF) are be-
lieved to participate in peripheral sensitization [34-37]. 
IL-1β is considered to exert its NP effects through a sig-
naling cascade and secondary production of prostaglan-
dins, bradykinin or nitric oxide. In addition, IL-1β can 
act directly on sensory neurons, increasing its sensitiv-
ity through a IL-1R1/TyrK/PKC mechanism [34,38]. The 
complex IL-6/sIL-6R, which is composed of IL-6 and its 
soluble receptor form, sIL-6R, promotes increased sen-
sitivity for noxious heat through a gp130/Jak/PKC mech-
anism [34,38]. Finally, TNF-stimulation of TNF-receptor 
1 and TNF-receptor 2 is associated with an activation of 

began developing questionnaires that had good discrim-
inative properties for the identification of NP, such as 
the Douleur Neuropathique en 4 Questions (DN4) ques-
tionnaire [16]. Other tools include: The Leeds Assess-
ment of Neuropathic Symptoms and Signs (LANSS) and 
its self-report counterpart (S-LANSS); The Neuropathic 
Pain Questionnaire; pain DETECT; ID Pain; Neuropathic 
Pain Scale; and Brief Pain Inventory [17].

Neuropathic pain in the general population
An extensive systematic review of epidemiological 

studies of NP in the general population was carried 
out between January 1966 to December 2012 [18]. 
Although data from specialist clinics, pain clinics, and 
studies focusing on population subgroups were exclud-
ed, the study categorized their results into patients 
with chronic pain and neuropathic characteristics and 
NP as associated with a specific condition. The under-
lying causes for NP are predominately herpes-zoster, 
diabetes, leprosy, cancer, infection by human immuno-
deficiency virus, carpal tunnel syndrome and trigemi-
nal neuralgia. For each clinical condition, NP presents 
a different prevalence and incidence. For instance, the 
following conditions and their associated person-years 
(PY): post-herpetic neuralgia (3.9-42.0/100,000 PY) 
[19-22], trigeminal neuralgia (12.6-28.9/100,000 PY) 
[19,21,22], pain diabetic peripheral neuropathy (15.3-
72.3/100,000 PY) [19,21,22] and glossopharyngeal neu-
ralgia (0.2-0.4/100,000 PY) [22,23]. The use of rates per 
person-years throughout these studies is not clinically 
useful, as the PY is not a productive indicator of how 
many cases are to occur in a particular time or popu-
lation. Interestingly, prevalence estimates of specific 
causes of NP are usually lower (1-2%) than reports on 
classic symptoms (6-8%) [24]. Ultimately, it has been 
considered that the best prevalence estimate of NP is 
6.9%-10% [18]. It was also proposed that the discrep-
ancy in prevalence of NP was due to the heterogeneity 
in the ascertainment tools that were used. Studies that 
used DN4 and S-LANSS had wider prevalence estimation 
(3.3-17.9%) than tailored and validated ascertainment 
tools (6.9-10%).

A French study identified higher prevalence of chron-
ic pain with neuropathic features in the middle age (50-
64 years), manual professions and those living in rural 
areas. Furthermore, the pain was associated with the 
lower limbs more so than any other part of the body 
[16]. In Germany, researchers interviewed participants 
by telephone, whereby 18.4% had non-NP chronic pain 
and 6.5% had NP [25]. The study highlighted that pa-
tients with NP were more likely to have higher pain se-
verity, interference in daily activities due to pain com-
pared to non-NP patients, and higher rates of co-mor-
bidities including major depressive disorder. In the UK, 
patients at six family practices in Aberdeen, Leeds, and 
London were deemed to have a NP prevalence of 8%. 
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Pharmacology of Ketamine

Chemistry
Ketamine is a phenylpiperidine analogue structurally 

consisting of 2(2-chlorophenyl)-2-(methylamino) cyclo-
hexanone (C13H16ClNO). It has a molecular weight of 
237.727 g/mol. As well as being freely soluble in water, 
it is highly lipophilic [51].

It exists as two stereoisomeric forms being Esket-
amine [S(+)] and Arketamine [R(-)], together known as 
the racemic mixture, with a pKa of 7.5 and acidic pH 
between 3.5-5.5 [52]. Whilst the former has a greater 
analgesic and anesthetic potency, with studies suggest-
ing a two to four time increase in efficacy [53,54], the 
enantiomers’ pharmacokinetic profiles are similar. This 
drug is available commercially in either the form of the 
racemic mixture named Ketalar or the S(+) enantiomer 
being Ketanest-S or S-Ketamine.

Routes of administration
Clinical consideration of the route of administration 

is vital in preventing extensive first-pass metabolism, re-
sulting in sub-optimal concentration of the drug in the 
plasma [55]. Ketamine is traditionally administered as 
a bolus either intravenously or through intramuscular 
route [56], of which the highest percentages of bioavail-
ability are achieved at 100% and 93% respectively.

Despite this, studies have shown that it remains ef-
fective in its analgesic capacity in treating NP by rectal, 
transdermal, oral, sublingual and subcutaneous routes 
[57]. Inhalation of nebulized ketamine has recently been 
shown to allow rapid assimilation of the drug without 
the need for invasive measures in emergencies [58,59].

Pharmacokinetics
Distribution: Ketamine displays a rapid onset of 

acute analgesic action in NP with an alpha half-life of 11 
minutes. Its lipophilic properties allow it to readily pass 
the blood-brain barrier, achieving a blood-effect site 
equilibration half-life between 1-10 minutes [53]. After 
IV administration, its volume of distribution is 1-3 L/kg 
with a re-distribution half-life of 7-15 minutes [60,61].

In relation to the long-term therapeutic use of ket-
amine in NP, studies have successfully shown that the 
onset and offset of ketamine are slower, with patients 
experiencing analgesic benefits up to 50 days after 
treatment was stopped [62]. In a study conducted by 
Sigtermans, et al., patients with Complex Regional Pain 
Syndrome Type 1 (CRPS-1), a condition characterized by 
chronic pain that is resistant to conventional therapy, 
were treated with a personalized stepwise dosage of 
20-30 mg/hour of S-Ketamine over 4.2 days [63]. It was 
subsequently found ketamine’s half-life was 11 days. As 
such, it is hypothesized that ketamine triggers a desen-

calcium mobilization and protein kinases in neurones 
[38,39].

Transient receptor potential channels (TRP) are 
a family of channels that are expressed on sensory 
nerves, whereby they respond to stimuli differently. 
Spinal nerve injury had resulted in greater levels of TRP-
ML3 in the undamaged dorsal root ganglion in compari-
son to the control [40]. Gene transcription is modulated 
through a cAMP-dependent PKA and Ca2+/phospholip-
id-dependent PKC complex signalling mechanism, as 
nerve damage can disrupt the flow of signal substances 
from the nerves to the dorsal root ganglion cell body 
[41]. There is also the promotion of proteins ERK, p-38, 
and c-jun, which cause neuronal degeneration and the 
preservation of pain sensation [42-44].

Central sensitization
The neurones in the dorsal horn can undergo in-

creased sensitivity in response to peripheral nerve in-
jury. This is characterised by increased neuronal activ-
ity, an expansion of receptive fields and a spreading of 
spinal hyperexcitability to other sections. The central 
nervous system's modulation in response to peripheral 
nerve damage is due to a sophisticated cascade system. 
The sensitized C-fibres release glutamate which act on 
N-methyl-D-aspartate (NMDA) receptors and neuro-
peptide substance P on the dorsal horn neurons. Pri-
mary dorsal horn neurons interact with second-order 
dorsal horn neurons, since after peripheral nerve injury 
these neurons express abnormal Nav1.3 [45]. Central 
voltage-gated N-calcium channels at presynaptic sites 
of primary afferents are overexpressed after periph-
eral nerve damage, causing increased glutamate and 
substance P release [46,47]. In addition, mitogen-acti-
vated protein kinase system (MAPK) is an intracellular 
cascade that is involved in central sensitization [48]. As 
central sensitization takes hold, non-painful stimuli can 
stimulate Aδ and Aβ mechanoreceptors, triggering a 
painful response. Interneurons release γ-aminobutyric 
acid (GABA), which inhibit dorsal horn neurons. In nerve 
damage, there is a loss of GABA-releasing neurons, 
causing a reduction in inhibition [49].

Microglia and NP
A recent published review by Zhao, et al. document-

ed the role of microglia in the pathobiology of neuro-
pathic pain development [50]. The underlying mecha-
nism is the release of various mediators from injured 
neurons including, but not limited to, Neuregulin-1, 
matrix metalloproteinase (MMP)-2, MMP-9, chemokine 
(C-C motif) ligand 2 (CCL2) and fractalkine. These medi-
ators decrease inhibitory interneurons whilst increasing 
excitatory currents and the recruitment of microglial 
cells. Microglia release factors and cytokines, such as 
interleukin IL-6, IL-1β and TNF-α, that contribute to pain 
facilitation.
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receptor (IRR) that is crucial for tissue repair and anti-in-
flammation in nerve damage [78]. Lastly, ketamine ac-
tivates descending inhibitory, ‘top-down’, pathways to 
induce analgesia.

In addition to NMDAR, ketamine acts as an agonist to 
a series of receptors with the opioid receptor being the 
most relevant to NP. Stimulation of this receptor with 
the over-consumption of opioids leads to hyperalgesia, 
through common intracellular pathways shared with NP 
development [79,80]. Opioid-induced hyperalgesia is a 
paradoxical phenomenon in that increasing doses in-
creases pain perception, which is mediated by opioids’ 
pharmacokinetic profile as an NDMA agonist [81-83]. 
Therapeutically, numerous studies have shown that this 
can be counter-acted by the pharmacological inhibition 
of the NMDAR, with ketamine proving the most effec-
tive. Low-dose ketamine as an adjuvant significantly re-
duces pain scores, as well as the consumption of opioids 
[84,85], compared to when given opioids are adminis-
tered alone [86-88].

Considerations: safety, tolerability and dosages
Ketamine use is associated with a vast array of side 

effects affecting mainly the cardiovascular, hepatic and 
nervous system [70]. A retrospective 5-year study con-
ducted by Marchetti, et al. found that half of the pa-
tients with NP experienced side effects, with eight out 
of the fifty-five patients having to stop treatment [89]. It 
is vital comprehensive histories are taken from patients 
to screen out those who may be at a heightened risk of 
experiencing side effects.

Ketamine predominately affects the CNS, impacting 
both psychological and neurological functions. The most 
concerning of which are psychedelic symptoms occurring 
at an incidence of 5-30%, with recent research showing it 
activates reward regions in the brain including the hippo-
campus [90]. Liu, et al. have further implicated the dopa-
mine system in ketamine’s stimulatory effects, achieved 
through the cortex-striatum circuitry [91].

Neurobehavioural changes become apparent in pa-
tients, where they exhibit a myriad of sensations includ-
ing but not limited to hallucinations, psychosis, anxiety, 
paranoia, schizophrenia-like state and frank delirium 
[92-94]. They may also experience intense euphoria, 
dissociation and depersonalization affecting their per-
ception of visual, auditory and pain stimuli [95], as well 
as the essence of time [96]. Consequently, ketamine is a 
target for recreational abuse [97]. This stimulant effect 
is particularly achieved at low-doses, posing concerns 
for patients receiving subanesthetic doses for NP. How-
ever, in clinical practice this hallucinogenic and hypnot-
ic effect can be attenuated with the use of benzodiaze-
pines as co-adjuvants.

Cognitive deficits are an area of concern in the long-
term administration of ketamine [98], with various 

sitization of NMDAR restoring nociceptive homeostasis 
[64]. The clinical benefit of significant pain relief per-
sists, but is slowly abated when ketamine is completely 
cleared by the body.

Metabolism and elimination: Ketamine is N-de-
methylated by the hepatic cytochrome P450 enzymes. 
The main isoenzyme responsible for this reaction is CY-
P3A4, with minor support from CYP2B6 and CYP2C9, to 
produce its major metabolite: norketamine [65]. This 
occurs within minutes after its administration through 
the intravenous route. As such, studies have shown that 
the concentration of norketamine has been found to ex-
ceed ketamine in cases where long-term bolus infusions 
were given [66]. Norketamine’s concentration remains 
elevated above ketamine, acting as a non-competitive 
antagonist of the NMDA receptor (NMDAR). Studies are 
currently underway to establish the clinical implications 
of norketamine in anesthesiology, with preliminary find-
ings suggesting it perpetuates algesic effects, negatively 
counteracting ketamine’s action [66,67]. This contrasts 
with Goldberg, et al. who found that norketamine con-
tributes to ketamine’s analgesic effect [68]. More stud-
ies are required to elucidate the effect of norketamine 
on ketamine’s clinical efficacy.

Elimination occurs when norketamine is subsequent-
ly further broken down into 4-, 5- and 6-hydroxynorket-
amine by the hydroxylation of its cyclohexane ring [69]. 
It subsequently undergoes glucuronidation in the liver 
and cleared through the kidney and bile. Studies have 
shown its clearance rate is 15 ml/kg/min and eliminat-
ed in 2.5 hours [70]. Following IV administration of ket-
amine, 91% is excreted in urine and 1-3% in faeces.

Mechanism of action
Ketamine is an uncompetitive antagonist of the ion-

otropic glutamatergic NMDAR receptor. This excitatory 
receptor is ubiquitously distributed in the brain and spi-
nal cord, with those located in the dorsal horn of the 
spinal cord critically involved in nociception and allody-
nia [70,71]. Studies are increasingly implicating NMDAR 
in the induction and maintenance of central and periph-
eral sensitization to NP, known as the wind-up phenom-
ena [72-74].

Ketamine exerts its strong analgesic action in NP 
through an extensive number of mechanisms, mainly 
through inhibition of NMDAR and reducing calcium-me-
diated neuronal death. Acutely, this prevents the af-
ferent transmission of nociceptive signals [75]. In the 
long term, therapeutic administration of ketamine is 
believed to abate the up-regulation of the NMDAR in 
the dorsal horn of the spinal cord, therefore reducing 
the hypersensitivity of these nerves and pain perception 
[76,77]. As such, restoration of nociceptive homeostasis 
is achieved. In addition to this mechanism, Swartjes, et 
al. showed that ketamine stimulates the innate repair 
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studies indicating it negatively modulates genomic ex-
pression in the hippocampus. Mouse studies by Ding, et 
al. [99] found that GluA1, p-S845 and p-S831 expression 
necessary for the functional integrity of AMPA recep-
tors in the hippocampus are compromised. This mani-
fested in learning and memory deficits that were largely 
time and dose-dependent. Morgan, et al. further sup-
ports this notion, where frequent Ketamine users, out 
of a cohort size of 150, had reduced performances in 
spatial working memory and pattern recognition [100]. 
They found the frequency of usage positively correlates 
with a higher incidence of dissociative and delusional 
symptoms.

In addition to this, ketamine increases cerebral me-
tabolism, cerebral blood flow (CBF), and intracranial 
pressure (ICP). Administration is thus contraindicated in 
patients who have or are at risk of intracranial pressure 
as ketamine may inadvertently increase this [101].

As a sympathomimetic, ketamine stimulates the 
cardiovascular system through the release of cate-
cholamines whilst acting as a negative inotrope. This 
presents a significant problem in clinics as myocardi-
al depression can occur either through high doses, or 
through prolonged durations of infusion. This particu-
larly affects those with a history of cardiac disease, as 
when administered acutely, ketamine triggers tachy-
cardia, increased blood pressure both systemically and 
pulmonary, as well as induces increased myocardial ox-
ygen consumption [102]. Screening of patients and their 
monitoring is thus essential in ensuring safe administra-
tion of ketamine.

The hepatic system is affected to a lesser degree with 
patients exposed to repetitive or prolonged infusions 
of low-dose ketamine exhibiting elevated liver enzyme 
profiles [70,102-104]. A study conducted by Noppers, 
et al., where patients with CRPS-1 were treated with 
100 hours of subanesthetic doses of ketamine, found 
an elevation that was extremely profound, terminating 
the study out of concerns for patient safety [102]. Liv-
er biopsies have shown changes that are indicative of 
liver obstruction or sclerosing cholangitis, whilst biliary 
imaging demonstrated dilatation of intra- and extrahe-
patic bile ducts. However, discontinuation of ketamine 
is normally followed by slow improvement, with some 
research indicating the normalization of liver enzymes 
within 3 months of cessation [105]. The benefits of the 
restoration of nociceptive homeostasis may arguably 
outweigh the risk of hepatotoxicity [63], particularly as 
pain relief remains weeks after ketamine treatment is 
stopped. As such, it is imperative that regular liver func-
tion tests are performed for monitoring to prevent the 
development of hepatotoxicity.

Lastly, it is important that considerations into ket-
amine’s safety and tolerability are explored in relation 

to dosage regimens as studies have shown pain relief 
is wholly dose-dependent. In NP, Ketamine is adminis-
tered in sub-anesthetic doses. Whilst there is no clear 
consensus on optimal dose regimens, certain studies 
have attempted to optimize this to specific neuropath-
ic sub-conditions. Increased infusion durations as well 
as the use of adjuvants to alleviate its psychomimetic 
side effects also factors in ketamine’s efficacy [100,106]. 
More studies are needed to elucidate the long-term im-
plications of its administration in subanesthetic doses.

On the whole, ketamine is generally well tolerated 
and safe in clinical settings. The most common side ef-
fects are minor, including but not limited to - nausea, 
vomiting and vertigo. The co-administration of adju-
vants, such as benzodiazepines, counteracts and allevi-
ates its side effect profile. The majority of studies con-
ducted on NP found that most patients found the side 
effects acceptable due to its efficacy in providing pain 
relief [63,107]. Close monitoring of the CNS, cardiovas-
cular and hepatic systems are essential to maintain safe 
clinical practice.

Pre-clinical Evidence
Whilst the precise mechanism by which ketamine 

elicits its analgesic effects against NP remains to be elu-
cidated, it is thought to be via its inhibitory effects on the 
NMDAR, which is considered a well-known target for the 
treatment of NP [28,72,108-112]. Ketamine has been 
shown to inhibit NMDAR-mediated nociceptive trans-
mission in the thalamus [113] and spinal cord [114], as 
well as attenuating the frequency-dependent increase 
in spinal cord neuron excitability induced by the stim-
ulation of C-fiber primary afferent neurons [114,115]. 
Due to ketamine’s ability to attenuate the onslaught of 
nociceptive input from the spinal cord to the brain, in 
addition to its enhancement of descending inhibition 
and anti-inflammatory effects [116,117], ketamine is 
considered a potential alternative to traditional treat-
ments of chronic pain syndromes ketamine produces 
[63,72]. Animal studies have consistently demonstrated 
the critical role that NMDAR activation has in nerve inju-
ry models, as well as the modifications of these changes 
when pre-empted by NMDA antagonist administration 
[118,119]. However, it is important to note that a recent 
meta-analysis of therapeutic agents in the management 
of NP did not find significant evidence in favour of the 
use of ketamine or other NMDA antagonists [13].

In addition to its effects on the NMDAR, ketamine’s 
analgesic effects are also dependent on various other 
receptor systems, including monoaminergic [120], opi-
oidergic [121], muscarinic and dopaminergic pathways, 
as well as microglial calcium-activated K+ channels, toll-
like receptor 3 [122], and other purinergic, cholinergic 
and adenosine systems [76,123]. Studies investigating 
the effects of ketamine in mice lacking the μ-opioid re-
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ty to induce significant antinociception, it concurrently 
results in unwanted side effects, with various clinical 
studies indicating that these can vary from psychotomi-
metic effects to arrhythmias, nausea and vomiting, hal-
lucinations and visual impairment [54,63,105,132-138].

It is important to consider the use of ketamine in 
conjunction with other analgesics to elicit optimum 
analgesic effects. The most effective management of 
chronic pain is by a multimodal approach and, in the 
setting of mixed nociceptive/NP such as cancer pain, 
ketamine is often co-administered with opioid analge-
sics. Animal studies indicate that NMDAR inhibitors, 
such as ketamine, act to prevent the development of 
opioid-induced hyperalgesia [139-141]. The term opi-
oid-induced hyperalgesia refers to the paradoxical state 
of nociceptive sensitization caused by the exposure to 
opioids, whereby an individual’s pain perception may 
be heightened due to acute or chronic opioid treat-
ment, resulting in difficult ongoing pain management. 
The ability of ketamine to potentially reduce the inci-
dence of opioid side-effects indicates that the combi-
nation of ketamine and opioid may be effective in the 
management of mixed nociceptive/NP states, such as 
chronic cancer pain.

Clinical Evidence
Ketamine is mainly used as a dissociative anesthetic 

due its ability to preserve respiratory drive. However, 
there is mounting evidence in support of ketamine’s use 
as an analgesic in NP ranging from small case studies to 
large randomized controlled clinical trials [77].

To date, four randomized controlled, double blind 
trials have examined the analgesic effect of long-term 
IV infusion of ketamine in NP. The most recent of which 
was conducted by Rigo, et al. who sought to establish 
the efficacy of both morphine and ketamine in NP [142]. 
Patients with NP refractory to conventional pain man-
agement models were split into three groups receiving; 
IV ketamine infusions only (n = 14), methadone only (n 
= 14) or methadone plus ketamine (n = 14). Pain scores 
were evaluated using a visual analogical scale (VAS) ex-
amining allodynia, burning and shooting pain. Whilst all 
treatment groups were found to be effective in reduc-
ing pain scores by at least 40%, the group receiving ket-
amine only achieved significantly higher improvements 
in pain relief. No differences were observed in reducing 
burning or shooting pain in any treatment groups, how-
ever, ketamine showed efficacy in reducing allodynia. 
This study concluded that subanesthetic ketamine is ef-
fective as a sole agent in NP management.

Amr examined the effect of ketamine on patients 
with a history of NP secondary to spinal cord injury, uti-
lizing a multiple day subanesthetic infusion model [143]. 
Group 1 (n = 20) received an 80 mg IV infusion over five 
hours everyday for one week with 300 mg gabapentin, 

ceptor have demonstrated that ketamine’s analgesic ef-
fects are, at least in part, mediated via the opioidergic 
system [124].

Pre-clinical research investigating the role of ket-
amine in the management of NP is both limited and in-
consistent. The clinical use of NMDAR inhibitors has clas-
sically been limited by a variety of side-effects related 
to the suppression of physiological functions mediated 
by the receptors. NP is etiologically heterogeneous and 
various maladaptive responses within the nociceptive 
pathway are responsible for its development, namely 
changes in gene expression, alterations in gene regula-
tion within the central nervous system, adaptations to 
ion channel permeability resulting in ectopic activity, 
and central amplification secondary to synaptic facilita-
tion of the neural axis. As a result of the varying aeti-
ologies and mechanisms involved in the development 
of NP, its treatment has been classically considered, to 
varying degrees, ineffective, with NP syndromes char-
acteristically displaying resistance to standard pharma-
cologic therapies, including tricyclic antidepressants, 
GABA-ergic agents, serotonin/norepinephrine reuptake 
inhibitors, and calcium channel agonists [125].

Pre-clinical studies investigating NP have demon-
strated that local production of erythropoietin, mediat-
ed by the receptor-ß-common receptor complex [126], 
following peripheral nerve injury acts to limit neuro-
nal damage and improve nerve function [127,128]. 
The expression of receptor-ß-common receptor com-
plex, termed the innate repair receptor (IRR), has been 
shown to be induced following inflammation and tissue 
injury, resulting in the transduction of specific cellular 
responses involving endothelial nitric oxide synthase 
[129], for instance, and the subsequent local production 
of erythropoietin [130]. Animal models investigating the 
effects of erythropoietin on NP have found that admin-
istration of exogenous erythropoietin is associated with 
an attenuation in neuronal apoptosis and pro-inflam-
matory cytokine production, and a restoration in an-
ti-inflammatory cytokine production, which phenotyp-
ically manifests as reduced allodynia and hyperalgesia 
[131]. The novel 11-amino acid peptide erythropoietin 
derivative, ARA290, has demonstrated similar analgesic 
effects against NP as ketamine, as well as similar effects 
on key markers of NP, including a reduction in the ex-
pression of mRNA of the NMDAR, astrocytes, microglia 
and chemokine ligand 2 [78]. An animal study conduct-
ed by Swartjes, et al. (2013) investigated whether ket-
amine and ARA290 shared a common pathway involving 
the IRR to induce analgesia [78]. The study found that 
ketamine produced profound antinociception, howev-
er,this occurred in conjunction with significant psycho-
motor side effects, and with both its analgesic and side 
effects occurring independently of an intact IRR. This 
study demonstrates that, whilst ketamine has the abili-
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administered, compared to 4 weeks with ketamine only 
[145]. An opioid-sparing effect was observed, translat-
ing into an improvement in anti-nociceptive response, 
which was only achieved with BK. This was the first 
pre-clinical study conducted on utilizing BK therapeuti-
cally in NP, and as such, further follow-up is necessary.

Topical use of ketamine has shown efficacy in achiev-
ing analgesia in various NP syndromes. This includes but 
is not limited to post-herpetic neuralgia, diabetic poly-
neuropathy and neuropathy secondary to spinal cord in-
juries. With NP growing in incidence in elderly patients, 
topical analgesia is garnering interest due to its minimal 
side effects and potential to be used as adjuncts to oral 
medication.

In a cohort size of 700 patients, Swaynok, et al. ob-
served significant pain relief with side effects limited to 
application site reactions, in the administration of 4% 
Amitriptyline and 2% Ketamine (AmiKet) [146]. They ar-
gue that AmiKet has the potential in being first-line in 
treating post-herpetic neuralgia, as well as being an ad-
junct to oral medications to ensure both peripheral and 
central pain sites are targeted. Rabi, et al. conducted 
a smaller study on the application of topical ketamine 
10% three times a day for two weeks in 5 patients with 
spinal cord injuries [147]. All patients reported pain re-
lief ranging from 14-63%, with no adverse effects. Fur-
ther studies with topical ketamine as an adjuvant has 
contributed to pain control [148]. On the whole, topical 
ketamine has shown efficacy in analgesia and further 
studies are needed.

Case studies have reported successful management 
of refractory NP with the use of ketamine [149,150]. 
Hanna, et al. managed a patient with Lichen Scleroses 
with a standard IV regimen, which reportedly abolished 
her pain syndrome completely [151]. The patient had 
been unresponsive to multiple pharmacological inter-
ventions, including opioids and anti-depressants. It was 
hypothesized that the immunomodulatory properties 
of ketamine was the underlying mechanism behind its 
therapeutic action.

In another case report, a patient with a history of 
Ehlers-danlos syndrome and spinal cord ischemic myelop-
athy presented with severe generalized body pain [152]. 
This was refractory to numerous pain therapies, and as 
such a 7-day ketamine infusion was administered reduc-
ing her pain score from 7-8 to 0-3. Secondary benefits in-
cluded functional improvement in her mobility as well as 
a subsequent reduction in her dosage of pain medication, 
including opioids. Lo, et al. thus argue that ketamine could 
potentially reduce the chronic use of pain medication.

Conclusion
Neuropathic pain is a devastating and debilitating 

form of chronic pain that affects individual’s physical 

three times daily, as an adjunct. Group 2 (n = 20) were 
given a placebo instead of ketamine, with 300 mg gab-
apentin three times daily. The results showed that group 
1 achieved significant reduction in pain scores during IV 
infusion and 2 weeks following initial treatment com-
pared to group 2. There were no differences between 
the two groups thereafter. Ketamine was well tolerated 
and the side effects were both minimal and did not re-
quire medical intervention, where 3 out of 20 patients 
experienced short-lasting delusions.

Sigtermans, et al. evaluated whether S(+)-ketamine 
provides pain relief in CRPS-1 patients with severe 
chronic pain [63]. Subjects were evaluated pre-treat-
ment, and a baseline of their pain scores were taken 
out of a scale of 1-10, with the mean being 7.2. Patients 
received either a 4.2-day IV infusion of subanesthetic 
ketamine (n = 30) or placebo (n = 30), where dosage was 
individualized to the efficacy of the analgesic effect and 
side effects experienced. Doses were increased in step-
wise increments with a mean dose of 22.2 ± 2 mg/hr/kg. 
Significant pain reduction was observed in those receiv-
ing ketamine with a pain score of 2.68 ± 0.51 compared 
to placebo at 5.45 ± 0.48. Whilst patients on ketamine 
experienced nausea, vomiting and psychotropic effects, 
most found this acceptable. As such, one can deduce 
that the benefits arguably outweigh the risks.

This was followed up by Schwartzman, et al. who 
sought to establish the efficacy of ketamine in treating 
CRPS-1 with daily 4-hour IV ketamine infusions for 10 
days, with a follow-up period of three months [105]. 
The patients were randomized into either a placebo 
(n = 10), where saline was substituted for ketamine, or 
treatment group (n = 9). All subjects received clonidine. 
The study showed that the treatment group demon-
strated significant relief across all pain parameters that 
persisted 12 weeks post-treatment. The side effects ex-
perienced were mainly nausea, fatigue and headaches. 
Although this study was criticized by Bell and Moore 
[144] who argued the sample size limited the statistical 
significance of the results, it is clear that more studies 
are needed to further investigate ketamine’s role in NP.

Niesters, et al. performed a meta-analysis on Schwartz-
man, Sigterman and Amr’s randomized control trial at 
weeks 1 and 4 to elucidate Ketamine’s efficacy in NP 
[70]. They found that its analgesic effect persists for at 
least 4 weeks, before rapidly declining suggesting that 
re-treatment is needed within 4-6 weeks of the initial 
administration. Therefore, they concluded re-admission 
poses financial implications.

Burst-Ketamine (BK) therapy has recently been ad-
vocated as an alternative pain management therapy. 
This is the infusion of subanesthetic ketamine with an 
opioid. Mak, et al. demonstrated a long-term anti-hy-
peralgesic effects persisting for 12 weeks when BK was 
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amine’s analgesic efficacy and to further understand its 
side effect profile. This is pertinent in order for clinicians 
to make informed decisions regarding the risks and ben-
efits associated with its use.
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and psychological well-being, quality of life and func-
tionality. Recent pre-clinical evidence exists to suggest 
that ketamine elicits its analgesic effects in neuropathic 
pain states by inhibiting NMDA-mediated signaling path-
ways. Pre-clinical findings also indicate that ketamine 
may be a useful adjunct to traditional opioid analgesics 
to elicit optimum analgesic regimens. However, clinical 
evidence is currently limited, with only a small number 
of randomized control trials (n = 4) indicating the effica-
cy of ketamine in attenuating neuropathic pain, whilst 
no improvement was noted in the psychological state or 
functionality of patients suffering from chronic neuro-
pathic pain. Furthermore, both pre-clinical and clinical 
data continue to suggest that ketamine administration 
is associated with a variety of unwanted side-effects af-
fecting the cardiovascular, hepatic and nervous systems, 
manifesting as tachycardia, systemic and pulmonary hy-
pertension, dizziness, hallucinations, psychosis, anxiety, 
paranoia and a schizoid-like state. Despite evidence for 
ketamine’s analgesic effects in neuropathic pain states, 
due to its extensive side-effect profile, it is likely that 
ketamine should be restricted to patients with treat-
ment-resistant, refractory neuropathic pain. Ketamine 
has always been classically considered as a drug that 
requires close monitoring due to its anesthetic and sed-
ative effects. In order for ketamine to be a viable option 
in the management of neuropathic pain in the outpa-
tient setting, tailored and smart dosing regimens are 
necessary and frequent input from clinicians is required 
in order to monitor patients and avoid toxicity or abuse. 
Whether outpatient or at-home, ketamine monitoring 
would be feasible in clinical practice remains to be eluci-
dated. Further well-powered randomized control trials 
are certainly warranted in order to be confident of ket-
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